AWS SUMMIT ONLINE

AWS Networking Building your network from 0 to millions of clients

Sébastien Stormacq Developer Advocate Amazon Web Services

Amazon Virtual Private Cloud

	Availability Zone US-EAST-1A	Availability Zone US-EAST-1B
🙆 VPC		
	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -

Subnets

	Availability Zone US-EAST-1A	Availability Zone US-EAST-1B
OPC	Public subnet	Public subnet
	Private subnet	Private subnet

EC2 instances

Gateways, endpoints & peering

Example web application

1 1 1 1 1	

IP addressing

	,	,
	Availability Zone US-EAST-1A	Availability Zone US-EAST-1B
🙆 VPC		
	Public subnet	Public subnet
	Private subnet	Private subnet

Private IP address range for your VPC – IPv4

- "CIDR" range?
 - **Classless inter-domain routing** •
 - No more class A, B, C •
- **RFC1918**
 - 192.168.0.0 / 16 •
 - 172.16.0.0 / 12 •
 - 10.0.0/8 •
- How much? •
 - /16 •
 - /28

Updated by: 6761

Network Working Group Request for Comments: 1918 Obsoletes: 1627, 1597 BCP: 5 Category: Best Current Practice

Address Allocation for Private Internets

Status of this Memo

This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements. Distribution of this memo is unlimited.

1. Introduction

For the purposes of this document, an enterprise is an entity autonomously operating a network using TCP/IP and in particular determining the addressing plan and address assignments within that network.

This document describes address allocation for private internets. The allocation permits full network layer connectivity among all hosts inside an enterprise as well as among all public hosts of different enterprises. The cost of using private internet address space is the potentially costly effort to renumber hosts and networks between public and private.

BEST CURRENT PRACTICE Errata Exist Y. Rekhter Cisco Systems B. Moskowitz Chrysler Corp. D. Karrenberg RIPE NCC G. J. de Groot RIPE NCC E. Lear Silicon Graphics, Inc. February 1996

Where to use IPv4 addresses?

	Availability Zone US-EAST-1A	 Availability Zone US-EAST-1B
🙆 VPC	Subnet	Subnet
	172.31.0.0 /24	172.31.1.0 /24
	Subnet	Subnet
	172.31.128.0 /24	172.31.129.0 /24
172.31.0.	0/16	

IPv6 basics

IPv6: Colon-separated hextet notation + CIDR

2001:0db8:0ec2:0000:0000:0000:00001/64 0000:0000:0000:0000:0000:0000 2001:db8:ec2:0:0:0:1/64 0:0:0:0:0:0:0:1/128 2001:db8:ec2::1/64 ::1/128

Unicast addresses

Loopback address Link local address (LLA) Global unicast address (GUA)

Multicast addresses (ff00::/8)

All nodes

All routers

Solicited node

::1
fe80::/10 (fe80::/64 in practice)
2600:1f16:14d:6300::/64

ff02::1 ff02::2 ff02::1:ff00:0/104

0000:0001/128

IPv6 on AWS

- /56 VPC
- /64 subnets
- Dual stack
- Link local address and global unicast address required

\$ ifconfi	g
eth0	Link encap:Ethernet HWaddr 0E:A2:04:52:2A:44
	inet addr:172.31.0.250 Bcast:172.31.0.255 Mask:255.255.255.0
	<pre>inet6 addr: fe80::ca2:4ff:fe52:2a44/64 Scope:Link</pre>
	inet6 addr: 2600:1f16:14d:6300:7965:9a71:653a:822b/64 Scope:Glob
	UP BROADCAST RUNNING MULTICAST MTU:9001 Metric:1
	RX packets:35090 errors:0 dropped:0 overruns:0 frame:0
	TX packets:12411 errors:0 dropped:0 overruns:0 carrier:0
	collisions:0 txqueuelen:1000
	RX bytes:49899286 (47.5 MiB) TX bytes:840649 (820.9 KiB)

Where to use IPv6 addresses?

	Availability Zone US-EAST-1A	Availability Zone US-EAST-1B
	 Subnet 172.31.0.0 /24 2600:1f16:14d:6300::/64 Constant Subnet 172.31.128.0 /24 2600:1f16:14d:6328::/64 	 Subnet 172.31.1.0 /24 2600:1f16:14d:6301::/64 Subnet 172.31.129.0 /24 2600:1f16:14d:6329::/64
172.31.0	0.0 /16	2600:1f16:14d:6300

)::/56

The "5 things" required for internet traffic

- 1. Public IP address
- 2. Internet gateway attached to a VPC
- 3. Route to an internet gateway
- 4. Network ACL Allow rule
- 5. Security group Allow rule

Public IP addresses for your instances

- Auto-assign public IP addresses
- Elastic IP addresses
 - Amazon Elastic IP address pool
 - Bring Your Own IP (BYOIP) pool

Public IP addresses

Internet access

Create internet g	Actions *			Destination	Target
Q Filter by tags a	and attributes or search by ke	eyword		172.31.0.0/16	local
Name		State	VPC -	2600:1f16:14d:6300::/56	local
	igw-09ef761d872b	attached	vpc-0bcb5110cf0c	0.0.0/0	igw-09ef761d872bd7
				::/0	igw-09ef761d872bd7

"To get to the IPv4 internet (0.0.0/0) go via the internet gateway" "To get to the IPv6 internet (::/0) go via the internet gateway"

	Status	Propagated
	Active	No
	Active	No
540	Active	No
540	Active	No

Internet access

Destination	Target	Status	Propagated
172.31.0.0/16	local	Active	No
2600:1f16:14d:6300::/56	local	Active	No
0.0.0/0	igw-09ef761d872bd7540	Active	No
::/0	eigw-063d49ed7bb0f8c36	Active	No

"To get to the IPv6 internet (::/0) go via the egress-only internet gateway (EIGW)"

Different routes for different subnets

Dublic subnet	Destination	Target	Status	Pr
	172.31.0.0/16	local	Active	No
	2600:1f16:14d:6300::/56	local	Active	No
	0.0.0/0	igw-09ef761d872bd7540	Active	No
	::/0	igw-09ef761d872bd7540	Active	No

"To get to the internet, go via the internet gateway"

Private subnet	Destination	Target	Status F	Pı
	172.31.0.0/16	local	Active N	lo
	2600:1f16:14d:6300::/56	local	Active N	lo

"To get to anything in the VPC, stay local. No route anywhere else."

Public & private subnets

Destination	Target	Status	Propagated
172.31.0.0/16	local	Active	No
2600:1f16:14d:6300::/56	local	Active	No

Destination	Target	Status	Propagated
172.31.0.0/16	local	Active	No
2600:1f16:14d:6300::/56	local	Active	No
0.0.0.0/0	igw-09ef761d872bd7540	Active	No
::/0	igw-09ef761d872bd7540	Active	No

"Instance A has a path to and from instance B." "Instance B has a path to and from the internet."

Network address translation (NAT) gateway

The route table for the private subnet says to send all IPv4 internet traffic to the NAT gateway. The NAT gateway translates all traffic that it receives such that it appears to come from itself. The route table for the public subnet says to send all internet traffic to the internet gateway.

	Status	Propagated
	Active	No
	Active	No
540	Active	No
540	Active	No

Network security

- Network ACLs
- Security groups
- VPC Flow Logs
- Amazon VPC Traffic Mirroring

Net	:WO	rk /	ACL	5			HTTPS (TO	CP/443)				
			VPC	Ava L	ailability Zone IS-EAST-1A			Avai US	lability Zone 5-EAST-1B			
Rule #	Туре		Protocol	Port Range	Source	Allow / Deny	Rule #	Туре	Protocol	Port Rang	e Destinati	on Allow / Deny
10	HTTPS* (84	43)	TCP (6)	8443	172.31.0.0/23	ALLOW	10	Custom TCP Rule	e TCP (6)	1024 - 655	35 172.31.0.0	0/23 ALLOW
*	ALL Traffic		ALL	ALL	0.0.0.0/0	DENY	×	ALL Traffic	ALL	ALL	0.0.0/0	DENY
*	ALL Traffic		ALL	ALL	::/0	DENY	*	ALL Traffic	ALL	ALL	::/0	DENY
					Web server (TCP/844	43)		M	/eb server			
	Rule #	Туре	Protoco	Port F	ange Source	Allow / Deny	Rule #	Туре	Protocol	Port Range	Destination	Allow / Deny
	100	ALL Traffic	: ALL	ALL	0.0.0/0	ALLOW	100	ALL Traffic	ALL	ALL	0.0.0/0	ALLOW
	101	ALL Traffic	: ALL	ALL	::/0	ALLOW	101	ALL Traffic	ALL	ALL	::/0	ALLOW
	*	ALL Traffic	ALL	ALL	0.0.0/0	DENY	*	ALL Traffic	ALL	ALL	0.0.0/0	DENY
	*	ALL Traffic	ALL	ALL	::/0	DENY	*	ALL Traffic	ALL	ALL	::/0	DENY

ort Range 🤇	Source (i)
13	0.0.0/0
13	::/0
t Range (Source (i)
3	sg-0f004ca5495132527

Security groups: Outbound

1	
rt Range ()	Destination (i)
3	pl-68a54001

VPC Flow Logs

• Amazon CloudWatch Logs or Amazon S3

- Does not impact throughput or latency
- Apply to VPC, subnet, or elastic network interface
- Accepted, rejected, or all traffic

version	3
account-id	384767312345
interface-id	eni-0b62d5e000e412345
srcaddr	108.56.192.231
dstaddr	172.31.0.202
srcport	50565
dstport	80
protocol	6
packets	7
bytes	751
start	1573704396
end	1573704455
action	ACCEPT
log-status	ОК
vpc-id	vpc-0af48868ceeb12345
subnet-id	subnet-02ab634d2e4c12345
instance-id	i-0a998a68301112345
tcp-flags	3
type	IPv4
pkt-srcaddr	108.56.192.231
pkt-dstaddr	172.31.0.202

Amazon VPC Traffic Mirroring

- Mirror to another elastic network interface or Network Load Balancer \bullet with UDP listener
- Packet copy; shares interface bandwidth \bullet
- Traffic mirror filters to define "interesting traffic" \bullet
- Traffic mirror session is the combination of source, target, and filter \bullet

Connecting between VPCs

	Create Peering Conne	ection			
AWS Cloud	Peering connection name tag	10to172		0	
	Select a local VPC to peer with				
10.0	VPC (Requester)*	vpc-0af48868ceeb85b11		•	С
	CIDRs	CIDR	Status	Status Reason	
		172.31.0.0/16	associated		
S	Select another VPC to peer with Account	 My account Another account This region (us-east-1) 			
	Region	O Another Region			
	VPC (Accepter)*	vpc-0ef795bf02a29e986		•	С
	CIDRs	CIDR	Status	Status Reason	
		10.0.0/16	associated		
	* Required			Cancel Create Peering Conner	ction

Accepter VPC IDvpc-0ef795bf02a29e986epter VPC RegionN. Virginia (us-east-1)cepter VPC CIDRs10.0.0.0/16connection statusActive

5	Propagated
5	Propagated
5	Propagated No No

Propagated
No
No
No

VPC peering: Different Region

Create Peering Conn	ection				
Peering connection name tag	Cross-Region Peering		•		
Select a local VPC to peer with					
VPC (Requester)*	vpc-0af48868ceeb85b11			- C	*
CIDRs	CIDR	Status	Status Reason		
	172.31.0.0/16	associated			
Select another VPC to peer with	My account				
Account	 Another account 				
Region	O This region (us-east-1)O Another Region				
	0				
	US East (Ohio) (us-east-2)			• C	
VPC (Accepter)*	US East (Ohio) (us-east-2)			- C	

VPC peering: Different account

Create Peering Conn	ection			
Peering connection name tag	Cross-Account, Cross-Region	1	0	
Select a local VPC to peer with				
VPC (Requester)*	vpc-0af48868ceeb85b11		•	C
CIDRs	CIDR	Status	Status Reason	
	172.31.0.0/16	associated		

Select another VPC to peer with

Account	My accountAnother account	
Account ID*	25!)97	
Region	This region (us-east-1)Another Region	-
	US East (Ohio) (us-east-2)	- C
VPC (Accepter)*	vpc-0a027a281b67d50c4	
* Required		Cancel Create Peering 0

VPC peering: Things to know

Can reference security groups from the peer VPC in the same Region

Can enable DNS hostname resolution to return private IP addresses

Can peer for both IPv4 & IPv6 addresses

Cannot have overlapping IP addresses

Cannot have multiple peers between the same pair of VPCs

Cannot use jumbo frames across inter-Region VPC peering

ie Region ddresses

Interconnecting VPCs at scale: VPC peering

Interconnecting VPCs at scale: VPC peering

Multiple VPCs access model: AWS Transit Gateway

AWS Transit Gateway with AWS site-to-site VPN

Corporate data center 172.16.0.0/16

AWS Transit Gateway with AWS Direct Connect gateway

Corporate data center 172.16.0.0/16

Customer router

High availability & scale

Lambda functions, and IP addresses, in multiple Availability Zones

Elastic Load Balancing: Options

Application Load Balancer

- IPv4, dual stack, front-end ٠
- Layer 7 ٠
- HTTP, HTTPS ۲
- Host-, path-based routing ٠
- Integrated authentication •
- Supported targets ٠
 - EC2 instances \bullet
 - Containers •
 - AWS Lambda \bullet
 - Private IP addresses \bullet

Network Load Balancer

- IPv4 \bullet
- Layer 4 \bullet
- TCP, UDP, TLS \bullet
- Supported targets \bullet
 - EC2 instances •
 - Containers •
 - Private IP addresses \bullet

Classic Load Balancer

- Supported targets
 - **EC2** instances

Example web application

Example web application – Final

APN Cloud Management Tools Competency Partners

Mare[®]

Visit the Partner Discovery Zone to meet the partner and view the full list of APN Competency Partners

How can I distribute content?

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon CloudFront

CloudFront is the AWS content delivery network

It securely delivers data, videos, applications, and APIs to customers globally with low latency and high transfer speeds

CloudFront is integrated with AWS; physical locations are directly connected to the AWS Global Cloud Infrastructure and other AWS services

It features a global network of >200 points of presence (PoPs)

What benefits does CloudFront deliver?

- Built-in security & DDoS protection
- Massive scale
- Performance-based request routing
- Connection optimization
- Dedicated, private AWS backbone
- Multi-tiered caching architecture for origin protection and offload
- Lower data transfer costs than regional endpoints

Amazon CloudFront: >200 PoPs

North America

Added 50% more PoPs in last year Launched in 2 new cities: Houston and Salt Lake City

EMEA

4 new countries: Bahrain, Belgium, Portugal, Israel 13 embeds in UK

South America

Added 3 new countries: Argentina, Chile, and Colombia 56% price cut 210 PoPs in 79 cities, 37 countries 75+ PoPs added in 2019 Ja Ac Cı

China

Launched in China with 4 new cities: Beijing, Shanghai, Zhongwei, Shenzhen

Japan

Added 6 PoPs in Tokyo Currently 17 PoPs in Japan

India / Australia

16 PoPs in India Added 3 PoPs in Sydney; currently 6 PoPs in Australia

Latency benefits with PoP launches PoP launches ensure connectivity with majority views and redundant AWS backbone

Chile 73% Latency reduction 104 ms → 28 ms

Bahrain: 40% Latency reduction 38 ms → 27 ms

Argentina 55% Latency reduction 79 ms → 35 ms

	1			
		D		
		Thu, Oct 24, 2019 0:00	am	
		Platform	P50	
		Cloudfront SSL	28ms	
				\sim
tt 13, 2019	Oct 20, 2019		Oct 27, 2019	

Building blocks of a CloudFront configuration

Distributions

- Unique CloudFront.net \bullet domain name to reference objects (abc123.cloudfront.net)
- **Custom domains** \bullet
- Custom TLS configuration \bullet
- Enable H2, IPV6 & logging • to Amazon S3
- Associate to AWS WAF ACL \bullet

Origins

- Any HTTP(S) endpoint \bullet
- TCP ports & timeouts \bullet
- TLS configuration \bullet

- Path condition
- Select origin

 \bullet

 \bullet

- **HTTP** methods \bullet
 - Caching and forwarding policy
- Enable object compression \bullet
 - signed URLs)

Behaviors

Configure features (Lambda@Edge triggers, field-level encryption,

Advanced security capabilities

Integrations with AWS security services

Robust content protection controls & encryption

- AWS WAF •
- AWS Shield •
- AWS Certificate Manager (ACM) •
- AWS Identity and Access Management (IAM) •
- AWS Config •
- AWS CloudTrail •

API acceleration with CloudFront

- TLS termination at edge
- Network optimizations: persistent connections, \bullet connection pooling, keep-alive
- AWS private backbone ullet
- Edge DDoS protection \bullet

"The performance gains are amazing, positively impacting our app's usage across the globe, especially in Regions further from US EAST 1."

Sample data from a customer test

Region	Avg SSL Negotiation w/o CDN	Avg SSL Negotiation w/ CDN	SSL Negotiation Latency Improvement
India	750 ms	50 ms	~93%
Australia (Sydney)	460 ms	50 ms	~90%
Indonesia	550 ms	70 ms	~87%
Africa (Mauritius)	650 ms	250 ms	~61%
Region	Avg SSL Negotiation w/o CDN	Avg SSL Negotiation w/ CDN	SSL Negotiation Latency Improvement
Brazil	350 ms	50 ms	~81%
US (Los Angeles)	210 ms	60 ms	~71%
US (Denver)	180 ms	70 ms	~61%
Toronto	140 ms	90 ms	~36%
	A	A	
Region	Avg SSL Negotiation w/o CDN	Avg SSL Negotiation w/ CDN	SSL Negotiation Latency Improvement
Berlin	470 ms	50 ms	~89%
Paris	400 ms	70 ms	~82%
Brussels	410 ms	80 ms	~80%
Spain	460 ms	90 ms	~70%
London	280 ms	90 ms	~68%

Region	Avg SSL Negotiation w/o CDN	Avg SSL Negotiation w/ CDN	SSL Negotiation Latency Improvement
India	750 ms	50 ms	~93%
Australia (Sydney)	460 ms	50 ms	~90%
Indonesia	550 ms	70 ms	~87%
Africa (Mauritius)	650 ms	250 ms	~61%
Region	Avg SSL Negotiation w/o CDN	Avg SSL Negotiation w/ CDN	SSL Negotiation Latency Improvement
Brazil	350 ms	50 ms	~81%
US (Los Angeles)	210 ms	60 ms	~71%
US (Denver)	180 ms	70 ms	~61%
Toronto	140 ms	90 ms	~36%
	÷ 001		
Region	Avg SSL Negotiation w/o CDN	Avg SSL Negotiation w/ CDN	SSL Negotiation Latency Improvement
Berlin	470 ms	50 ms	~89%
Paris	400 ms	70 ms	~82%
Brussels	410 ms	80 ms	~80%
Spain	460 ms	90 ms	~70%
London	280 ms	90 ms	~68%

Region	Avg SSL Negotiation w/o CDN	Avg SSL Negotiation w/ CDN	SSL Negotiation Latency Improvement
India	750 ms	50 ms	~93%
Australia (Sydney)	460 ms	50 ms	~90%
Indonesia	550 ms	70 ms	~87%
Africa (Mauritius)	650 ms	250 ms	~61%
Region	Avg SSL Negotiation w/o CDN	Avg SSL Negotiation w/ CDN	SSL Negotiation Latency Improvement
Brazil	350 ms	50 ms	~81%
US (Los Angeles)	210 ms	60 ms	~71%
US (Denver)	180 ms	70 ms	~61%
Toronto	140 ms	90 ms	~36%
	A 001	A	
Region	Avg SSL Negotiation w/o CDN	Avg SSL Negotiation w/ CDN	SSL Negotiation Latency Improvement
Berlin	470 ms	50 ms	~89%
Paris	400 ms	70 ms	~82%
Brussels	410 ms	80 ms	~80%
Spain	460 ms	90 ms	~70%
London	280 ms	90 ms	~68%

Lambda@Edge

Lambda@Edge is an extension of AWS Lambda that enables you to run Node.js functions at AWS global edge locations in response to CloudFront events

No servers to manage

Continuous scaling

- Improve viewer performance igodol
- Reduce origin load / simplify origin architecture ightarrow

Never pay for idle – no cold servers

CloudFront and Lambda@Edge

Origin

Lambda@Edge use cases

Amazon CloudFront customers

Learn networking with AWS Training and Certification Resources created by the experts at AWS to help you build and validate cloud networking skills

Free digital courses cover topics related to networking and content delivery, including Introduction to Amazon CloudFront and AWS Transit Gateway Networking and Scaling

Validate expertise with the AWS Certified Advanced Networking – Specialty exam

Visit the advanced networking learning path at aws.amazon.com/training/path-advanced-networking

Thank you!

Sebastien Stormacq @sebsto

AWS SUMMIT

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

